The Maclaurin series for the function f is given by

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 x)^{n+1}}{n+1}=3 x-\frac{9 x^{2}}{2}+9 x^{3}-\frac{81 x^{4}}{4}+\cdots+\frac{(-1)^{n}(3 x)^{n+1}}{n+1}+\cdots
$$

on its interval of convergence.
a) Find the interval of convergence of the Maclaurin series for f.
b) Show that $\left|P_{4}(0.1)-f^{\prime}(0.1)\right| \leq .0005$.
c) Find the first four terms and the general term for the Maclarin series for $f^{\prime}(x)$
d) Find the function that represents the sum of the series in part (b)
e) Use the answer you found in part (c) to find the value of $f^{\prime}\left(\frac{-1}{2}\right)$

